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Abstract: The decay B̄ → K̄∗(→ K̄π)l̄l offers great opportunities to explore the physics

at and above the electroweak scale by means of an angular analysis. We investigate the

physics potential of the seven CP asymmetries plus the asymmetry in the rate, working at

low dilepton mass using QCD factorization at next-to leading order (NLO). The b→ s CP

asymmetries are doubly Cabibbo-suppressed . 1% in the Standard Model and its exten-

sions where the CKM matrix is the only source of CP violation. Three CP asymmetries

are T-odd, and can be O(1) in the presence of non-standard CP violation. The T-even

asymmetries can reach O(0.1), limited by the small strong phases in the large recoil region.

We furthermore point out an easy way to measure CP phases from time-integrated, un-

tagged B̄d, Bd → K∗(→ K0π0)l̄l and B̄s, Bs → φ(→ K+K−)l̄l decays. Analyses of these

CP asymmetries can rule out, or further support the minimal description of CP viola-

tion through the CKM mechanism. Experimental studies are promising for (super) flavor

factories and at hadron colliders.
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1. Introduction

The quest for physics beyond the Standard Model (SM) is of highest priority at current

and future flavor facilities [1]. A promising direction is to look for CP symmetry breaking

effects that cannot be accounted for with the SM‘s very predictive CKM-mechanism of CP

and flavor violation for the quarks. Rare b→ s transitions are such sensitive probes, since

all CP violating effects in the SM receive a universal suppression of order 10−2 from the

CKM matrix elements. Ongoing experimental efforts include those with hadronic decays

such as B̄s, Bs → J/Ψφ at the Tevatron [2] and b → ss̄s induced penguin modes, see,

e.g., [3] for recent data.

We focus here on exclusive semileptonic decays induced by b→ sl̄l, l = e, µ, to explore

the borders of the SM. The decays B̄ → K̄l̄l and B̄ → K̄∗l̄l have already been observed,
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with their rate being in agreement with the SM. Investigations of more involved observables

such as dilepton mass spectra, lepton angle distributions and dimuon to dielectron ratios are

currently being pursued [4 – 6]. The decay B̄ → K̄∗ l̄l with subsequent K̄∗ → K̄π allows to

extract further physics information through an angular analysis of the K̄πl̄l final state [7],

especially on the chirality content [8 – 10].

Here we study the eight CP asymmetries in B̄ → K̄∗(→ K̄π)l̄l decays, the one in the

decay rate plus seven more requiring angular information. We calculate the matrix elements

to next-to-leading order (NLO) in the strong coupling and to lowest order (LO) in the 1/E

expansion [11], where E denotes the energy of the emitted K̄∗ in B̄ rest frame. We work

within QCD factorization (QCDF), which has been applied to B̄ → K̄∗l̄l decays [12, 13],

for analyses in soft-collinear effective theory (SCET), see [14]. Previous works on CP

asymmetries in the angular distributions [7, 15, 16] employed naive factorization, see [17]

for a PQCD study.

By means of the large energy limit, the QCDF framework used in our analysis holds

for small dilepton invariant masses, and predicts small strong phases: Lowest order quark

loops are either close to or below threshold, hence real (charm quarks), or CKM suppressed

or induced by small penguin contributions (the lighter quarks). Other sources of strong

phases are from subleading spectator effects or higher order in αs.

This highlights T-odd CP asymmetries, three of which are accessible with the angular

analysis. (The T-transformation reverses the sign of all particle momenta and spins.) The

important feature is that the T-odd asymmetries are ∝ cos ∆S sin ∆W , where ∆S and

∆W denote the differences of strong and weak phases, respectively. While the T-even

CP asymmetries ∝ sin ∆S sin ∆W vanish for small strong phases, the T-odd asymmetries

exhibit maximal sensitivity to CP violation in this limit.

Time-dependent CP asymmetries in B̄d, Bd → K∗(→ K0π0)l̄l have also been con-

sidered in [16]. These measurements require large amounts of data. We suggest here to

use the CP-odd property of four of the asymmetries to extract them from an untagged

and time-integrated data set. It has been known that such data sets are useful to access

CP violation in angular distributions, e.g., [18, 19]. We work out the corresponding CP-

sensitive observables in B̄d, Bd → K∗(→ K0π0)l̄l and B̄s, Bs → φ(→ K+K−)l̄l decays.

The K+K− l̄l final state is the same as the one of the B̄s, Bs → φ(→ K+K−)J/Ψ(→ l̄l)

decays, which are already under experimental study including angular analysis [2].

In section 2 we review the B̄ → K̄∗(→ K̄π)l̄l angular distributions. CP asymmetries

and possibilities of their measurement from double- and single-differential distributions are

given in section 3. Prospects for B̄d, Bd → K∗(→ K0π0)l̄l and B̄s, Bs → φ(→ K+K−)l̄l

decays without tagging are examined in section 4. SM predictions and theoretical uncer-

tainties are presented in section 5. In section 6 we model-independently investigate the

impact of New Physics (NP) on the CP asymmetries. To do so, we work out constraints

from other rare decay data, B̄ → Xs l̄l, Xsγ, the forward-backward asymmetry in B̄ → K̄∗l̄l

and time-dependent CP asymmetries in B̄d, Bd → K∗(→ K0π0)γ. We summarize in sec-

tion 7. Various appendices A–F contain details of the calculation of the CP asymmetries.
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2. Full angular distribution

In this section we review the angular distribution of the exclusive decay B̄ → K̄∗(→ K̄π)l̄l

and its conjugate decay. Throughout this work we use B̄ ≡ (bq̄) for q = u, d, B̄s ≡ (bs̄)

and K̄, K̄∗ ≡ (sq̄). We illustrate the kinematics for neutral mesons decaying to charged

particles. Charged B-decays can be treated analogously. We discuss meson mixing effects

and B̄s → φ(→ K+K−)l̄l decays in section 4.

The full angular distribution of the decay B̄0 → K̄∗0(→ K−π+)l̄l can be written in the

limit of an on-shell decaying K∗ resonance as a 4-differential distribution [7, 9]

d4Γ

dq2 d cos θl d cos θK∗ dφ
=

3

8π
J(q2, θl, θK∗ , φ), (2.1)

where the lepton spins have been summed over. Here, q2 is the dilepton invariant mass

squared, that is, qµ is the sum of pµ
l+

and pµ
l−

, the four momenta of the positively and

negatively charged lepton, respectively. Furthermore, θl is defined as the angle between

the negatively charged lepton and the B̄ in the dilepton center of mass system (c.m.s.) and

θK∗ is the angle between the Kaon and the B̄ in the (K−π+) c.m.s. . .We denote by pi the

three momentum vector of particle i in the B̄ rest frame. Then, φ is given by the angle

between pK− ×pπ+ and pl− ×pl+ , i.e., the angle between the normals of the (K−π+) and

(l−l+) planes. The full kinematically accessible phase space is bounded by

4m2
l 6 q2 6 (MB −MK∗)2, −1 6 cos θl 6 1, −1 6 cos θK∗ 6 1, 0 6 φ 6 2π, (2.2)

where ml,MB and MK∗ denote the mass of the lepton, B meson and the K∗, respectively.

For an off-resonance B̄ → K̄πl̄l study, see [20].

The dependence of the decay distribution (2.1) on the angles θl, θK∗ and φ can be

made explicit as

J(q2, θl, θK∗ , φ) =Js
1 sin2 θK∗ + Jc

1 cos2 θK∗ + (Js
2 sin2 θK∗ + Jc

2 cos2 θK∗) cos 2θl

+J3 sin2 θK∗ sin2 θl cos 2φ+J4 sin 2θK∗ sin 2θl cosφ+J5 sin 2θK∗ sin θl cosφ

+ J6 sin2 θK∗ cos θl + J7 sin 2θK∗ sin θl sinφ

+ J8 sin 2θK∗ sin 2θl sinφ+ J9 sin2 θK∗ sin2 θl sin 2φ, (2.3)

where the coefficients J
(a)
i = J

(a)
i (q2) for i = 1, . . . , 9 and a = s, c are functions of the dilep-

ton mass. In the following we suppress the q2-dependence for brevity also in expressions

derived from the J
(a)
i .

The angular coefficients J
(a)
i can be expressed through the K∗ transversity amplitudes

Ai(q
2) with i = {⊥, ‖, 0, t}, see appendix A. Note that not all the J

(a)
i are independent,

for example, for vanishing lepton masses

3Js
1 = Js

2 , Jc
1 = −Jc

2 . (2.4)

Furthermore, in the absence of right-handed currents J3 = J9 = 0 up to power corrections.

– 3 –
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The corresponding distribution of the CP conjugated decay B0 → K∗0(→ K+π−)l̄l

can be written as
d4Γ̄

dq2 d cos θl d cos θK∗ dφ
=

3

8π
J̄(q2, θl, θK∗ , φ). (2.5)

Here, θK∗ denotes the angle between the Kaon and the B meson in the (K+π−) c.m.s. . . The

definiton of θl is identical for both B and B̄ decays. The angle φ for B decays is given by

the angle between pK+ × pπ− and pl− × pl+ . Therefore, in the limit of unbroken CP, the

distributions for B and B̄ mesons are equal under the combined transformations θl → θl−π
and φ→ −φ. The function J̄ is hence obtained from J in (2.3) by the replacements

J
(a)
1,2,3,4,7 → J̄

(a)
1,2,3,4,7, J5,6,8,9 → −J̄5,6,8,9, (2.6)

where J̄
(a)
i equals J

(a)
i with all weak phases being conjugated [7].

With its rich multi-dimensional structure, the angular distributions in (2.1) and (2.5)

have sensitivity to various effects modifying the SM, such as CP violation beyond CKM

and/or right-handed currents. Given sufficient data, all J
(a)
i and J̄

(a)
i can in principle be

completely measured from the full angular distribution in all three angles θl, θK∗ and φ.

The familiar dilepton invariant mass spectrum for B̄ → K̄∗l̄l decays can be recovered

after integration over all angles as

dΓ

dq2
= J1 −

J2

3
, where J1,2 ≡ 2Js

1,2 + Jc
1,2. (2.7)

The (normalized) forward-backward asymmetry AFB is given after full φ and θK∗ integra-

tion as1

AFB(q2) ≡
[
∫ 1

0
−
∫ 0

−1

]

d cos θl
d2Γ

dq2 d cos θl

/

dΓ

dq2
= J6

/

dΓ

dq2
. (2.8)

By dΓ̄/dq2 and ĀFB(q2) we refer to the corresponding spectra of the CP conjugated decays.

3. CP asymmetries

CP violating effects in the angular distribution are signaled by non-vanishing differences

between the (q2-dependent) angular coefficients

∆J
(a)
i = ∆J

(a)
i (q2) ≡ J

(a)
i − J̄

(a)
i . (3.1)

Of particular importance are the asymmetries related to the coefficients J7,8,9. These

are odd under φ → −φ, and hence induce T-odd asymmetries ∆J7,8,9 which are not sup-

pressed by small strong phases as predicted from QCDF.

The CP asymmetry in the dilepton mass distribution is commonly defined as, see (2.7),

ACP(q2) ≡ d(Γ − Γ̄)

dq2

/

d(Γ + Γ̄)

dq2
=

1

NΓ

[

∆J1 −
∆J2

3

]

, NΓ = NΓ(q2) =
d(Γ + Γ̄)

dq2
. (3.2)

1Since we define the lepton angle θl with respect to the l−, our definiton of the forward-backward

asymmetry (2.8) differs from the one in other works using the l+, e.g., [5, 6, 12, 13, 21], by a global sign.

– 4 –
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Following [7], we define in addition to ACP seven normalized CP asymmetries as

Ai(q
2) ≡ 2∆Ji

NΓ
for i = 3, 6, 9, AD

i (q2) ≡ −2∆Ji

NΓ
for i = 4, 5, 7, 8. (3.3)

Note that up to differences in the normalization A6 equals the forward-backward CP asym-

metry ACP
FB advocated to search for non-standard CP violation in the decay B̄ → K̄∗l̄l [22,

23], see (2.8). For q2-integrated quantities we introduce the notation

〈X〉 =

∫ q2
max

q2
min

dq2X(q2), (3.4)

where the integration from q2min to q2max should be in the low dilepton mass region in order

to use the 1/E expansion of QCD for theory predictions, see appendix C. We then define

the normalized q2-integrated CP asymmetries as

〈Ai〉 ≡ 2
〈∆Ji〉
〈NΓ〉

for i = 3, 6, 9,
〈

AD
i

〉

≡ −2
〈∆Ji〉
〈NΓ〉

for i = 4, 5, 7, 8, (3.5)

where the numerator and the denominator are integrated with the same q2 cuts.

The CP asymmetries 〈Ai〉 (i = 3, 6, 9) can, for example, be extracted from the double-

differential distribution in θl and φ,

d2 〈Γ〉
d cos θl dφ

=
1

4π

{

〈J1〉 + 〈J2〉 cos 2θl + 2 〈J3〉 sin2 θl cos 2φ

+ 2 〈J6〉 cos θl + 2 〈J9〉 sin2 θl sin 2φ
}

, (3.6)

which is obtained from integrating (2.1) over θK∗. After full θl-integration follows

d 〈Γ〉
dφ

=
1

2π

{

〈J1〉 −
〈J2〉
3

+
4

3
〈J3〉 cos 2φ+

4

3
〈J9〉 sin 2φ

}

, (3.7)

showing that 〈∆J9〉 can be found from d
〈

Γ + Γ̄
〉

/dφ, whereas 〈∆J3〉 can be obtained from

d
〈

Γ − Γ̄
〉

/dφ, with 〈∆J1〉 − 〈∆J2〉 /3 from ACP without angular study, see (3.2).

The measurement of the CP asymmetries 〈AD
i 〉 (i = 4, 5, 7, 8) requires binning into

cos θK∗ as

d2
〈

AθK∗

〉

d cos θl dφ
≡
[
∫ 1

0
−
∫ 0

−1

]

d cos θK∗

d3 〈Γ〉
d cos θK∗ d cos θl dφ

(3.8)

=
1

2π

{

〈J4〉 sin 2θl cosφ+ 〈J5〉 sin θl cosφ+ 〈J7〉 sin θl sinφ+ 〈J8〉 sin 2θl sinφ
}

.

From here follows upon full θl-integration

d
〈

AθK∗

〉

dφ
=

1

4
{〈J5〉 cosφ+ 〈J7〉 sinφ} . (3.9)

We learn that 〈∆J5〉 can be extracted from d
〈

AθK∗
+ ĀθK∗

〉

/dφ whereas 〈∆J7〉 can be

obtained from d
〈

AθK∗
− ĀθK∗

〉

/dφ. The double asymmetry in θK∗ and θl,

d
〈

AθK∗ ,θl

〉

dφ
≡
[
∫ 1

0
−
∫ 0

−1

]

d cos θl
d2
〈

AθK∗

〉

d cos θl dφ
=

2

3π
{〈J4〉 cosφ+ 〈J8〉 sinφ} , (3.10)

– 5 –
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allows to obtain 〈∆J4〉 from d
〈

AθK∗ ,θl
− ĀθK∗ ,θl

〉

/dφ, whereas 〈∆J8〉 can be extracted

from d
〈

AθK∗ ,θl
+ ĀθK∗ ,θl

〉

/dφ.

The latter considerations demonstrate how the CP violating angular coefficients ∆Ji

for i = 3, 4, 5, 7, 8, 9 can be extracted from distributions in the angle φ. The quantity ∆J6

can be measured easiest from the cos θl-distribution, i.e., by adding the (numerators of

the) forward-backward asymmetries AFB and ĀFB, see (2.8). Note that only A3, A6 and

A9 can be obtained from a genuinely single-differential distribution. A9 is the only T-odd

asymmetry with this property.

Analytical expressions for all CP asymmetries at NLO in terms of the short distance

coefficients from the electroweak Hamiltonian in appendix B are presented in appendix D.

In particular, we include NLO αs-corrections thus present in this work the first analyses of

CP asymmetries in the B̄ → K̄∗(→ K̄π)l̄l angular distributions at this order.

Corrections from Bd − B̄d mixing to the time integrated CP asymmetries in flavor

specific (self-tagging) final states are of the order |Ad
SL| . O(10−3) [24] and can be neglected.

Here, Ad
SL denotes the semileptonic asymmetry into wrong sign leptons in the Bd-system.

4. CP asymmetries without tagging

With the Ji, i = 5, 6, 8, 9 being odd under CP, see (2.6), the corresponding CP asymmetries

can be extracted from dΓ+dΓ̄, i.e., without identifying the flavor of the initial b quark. This

feature is very useful for B̄d, Bd → K∗(→ K0π0)l̄l and B̄s, Bs → φ(→ K+K−)l̄l decays,

which unlike B̄d, Bd → K∗(→ K∓π±)l̄l or charged B-decays, are not self-tagging. We

focus here on Bs-decays to CP eigenstates, but the formalism equally applies to Bd-decays

after the corresponding replacements.

Both B̄s and Bs angular distributions are described by the angles θl, θK∗ and φ. These

are defined in complete analogy with B̄ → K̄∗(→ K̄π)l̄l decays, see section 2: θl is the angle

between the negatively charged lepton and the B̄s/Bs in the dilepton c.m.s., θK∗ denotes

the angle between the K− and the B̄s/Bs in the (K−K+) c.m.s. and φ is the angle between

pK− × pK+ and pl− × pl+ .

To account for mixing, time-dependent transversity amplitudes need to be introduced:

Aa(t) ≡ A(B̄s(t) → φ(→ K+K−)a l̄l), Āa(t) ≡ A(Bs(t) → φ(→ K+K−)a l̄l), (4.1)

where Aa(t), (Āa(t)) denotes the amplitude for a meson born at time t = 0 as a B̄s, (Bs)

decaying through the transversity amplitude a =⊥, ‖, 0 at later times t. Here we use

for brevity Aa(t) for both AL
a (t) and AR

a (t). The formulae for the unmixed transversity

amplitudes, i.e., the ones at t = 0 can be taken from appendix C with the requisite

replacements in masses and hadronic parameters and differences in the spectator effects

given in [13] to account for the B̄s → φ transitions.

Untagged rates dΓ + dΓ̄ can then be written as (a, b =⊥, ‖, 0) [18]

Ā∗
b(t)Āa(t) +A∗

b(t)Aa(t) =
1

2
A(Bs → φ(→ K+K−)b l̄l)

∗A(Bs → φ(→ K+K−)a l̄l)

×
[

(1 + ηaηbξ
∗
b ξa)

(

e−ΓLt + e−ΓH t
)

+ (ηbξ
∗
b + ηaξa)

(

e−ΓLt − e−ΓH t
)]

. (4.2)

– 6 –
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Here, η‖,0 = +1 and η⊥ = −1 are the CP eigenvalues of the final state and ΓL(H) denotes

the width of the lighter (heavier) mass eigenstate. We neglect CP violation in mixing,

which is bounded by the semileptonic asymmetry in the Bs-system |As
SL| . O(10−2) [2].

Furthermore,

ξa = e−iΦM
A(B̄s → φ(→ K+K−)a l̄l)

A(B̄s → φ(→ K+K−)a l̄l)(δW → −δW )
, (4.3)

where (δW → −δW ) implies the conjugation of all weak phases in the denominator and ΦM

denotes the phase of the Bs − B̄s mixing. It is very small in the SM, ΦSM
M = 2arg(V ∗

tsVtb).

The CP asymmetries ∆Ji(t) = Ji(t) − J̄i(t), i = 5, 6, 8, 9 are then obtained by taking

the real and imaginary parts of (4.2), adding or subtracting Āk∗
b (t)Āk

a(t) +Ak∗
b (t)Ak

a(t) for

k = L and k = R, and taking into account normalization factors depending on the angular

coefficient Ji, see appendix A. After time-integration follows from (4.2)

∫ ∞

0
dt(Ā∗

b(t)Āa(t) +A∗
b(t)Aa(t)) = A(Bs → φ(→ K+K−)bl̄l)

∗A(Bs → φ(→ K+K−)a l̄l)

× 1

Γ(1 − y2)
[(1 + ηaηbξ

∗
b ξa) − y (ηbξ

∗
b + ηaξa)] , y =

∆Γ

2Γ
, (4.4)

where Γ = (ΓL + ΓH)/2 and the width difference ∆Γ = ΓL − ΓH .

This expression (4.4) becomes transparent if one neglects strong phases, where ξa =

e−i(ΦM−2Φa), Φa ≡ arg(A(B̄s → φ(→ K+K−)a l̄l). For a 6= b, ηa = −ηb we obtain

∫ ∞

0
dt Im(Ā∗

b(t)Āa(t) +A∗
b(t)Aa(t)) =

2

Γ(1 − y2)
|A(Bs → φ(→ K+K−)b l̄l)|

× |A(Bs → φ(→ K+K−)a l̄l)| · [sin(Φa − Φb) − yηa sin(ΦM − Φa − Φb)] , (4.5)
∫ ∞

0
dt
∑

a

(|Āa(t)|2 + |Aa(t)|2) =
2

Γ(1 − y2)

∑

a

|A(Bs → φ(→ K+K−)a l̄l)|2

× [1 − yηa cos(ΦM − 2Φa)] , (4.6)

where (4.5) gives the asymmetries related to J8,9 and (4.6) is needed for normalization,

that is, gives (twice) the CP averaged decay rate. It also exhibits sensitivity to CP phases.

The T-even asymmetries associated with J5,6 vanish with no strong phases present.

We define (q2-dependent) CP-odd CP asymmetries A
(D)mix
i as (a =⊥, ‖, 0, k = L,R)

Amix
i (q2) ≡ 2

∫∞
0 dt∆Ji(t)

∫∞
0 dt

∑

a,k(|Āk
a(t)|2 + |Ak

a(t)|2)
for i = 6, 9,

ADmix
i (q2) ≡ −2

∫∞
0 dt∆Ji(t)

∫∞
0 dt

∑

a,k(|Āk
a(t)|2 + |Ak

a(t)|2)
for i = 5, 8, (4.7)

which match the CP asymmetries of the flavor-specific, unmixed decays (3.3) for y → 0.

For Bd-mesons, y is below 10−2 [24], and the untagged and time-integrated K0π0 final

states yield the same information on CP violation as the ones with K∓π± discussed in

section 3, or charged B-decays. (For early works with y = 0, see [19]). For Bs-mesons the

width difference is larger, y ∼ O(0.1) [24], and interference effects become observable with

– 7 –
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λ = 0.2258+0.0016
−0.0017 (95% C.L.) [26] B(B̄ → Xclν̄l) = (10.57 ± 0.15)% [24]

|Vcb| = 0.0417 ± 0.0013 (95% C.L.) [26] τB0 = (1.530 ± 0.009) ps [24]

ρ̄ = [0.108, 0.243] (95% C.L.) [26] τBs = (1.425 ± 0.041) ps [24]

η̄ = [0.288, 0.375] (95% C.L.) [26] fBu,d
= (200 ± 30) MeV

αs(mZ) = 0.1176 ± 0.0020 [24] fBs = (240 ± 30) MeV [28]

αe(mb) = 1/133 λB,+(1.5 GeV) = (0.458 ± 0.115) GeV [13, 29]

mW = 80.403 GeV [24] fK∗

⊥ (1 GeV) = (185 ± 10) MeV [30]

mpole
t = (170.9 ± 1.8) GeV [27] fK∗

‖ = (217 ± 5) MeV [24]

mb = (4.6 ± 0.1) GeV [12] a
⊥,‖
1,K∗(1 GeV) = 0.1 ± 0.07 [25]

mpole
c = (1.4 ± 0.2) GeV a

⊥,‖
2,K∗(1 GeV) = 0.1 ± 0.1 [25]

Table 1: The numerical input used in our analysis. We denote by mb the PS mass at the

factorization scale µf = 2 GeV. We neglect the strange quark mass throughout this work unless

otherwise stated. The numerical input for the form factors ξ⊥,‖ is given in appendix E.

the mixing phase ΦM . The latter is currently under intense experimental study and only

poorly determined to date, see, e.g., [2].

We refrain in this work from presenting a dedicated numerical analysis for the B̄s, Bs →
φ(→ K+K−)l̄l observables A

(D)mix
i : The presumably dominant part independent of the

width difference can be inferred from B̄ → K̄∗(→ K̄π)l̄l decays by SU(3). The biggest

corrections such as those from the form factors and phase space are expected to cancel in

the asymmetries. On the other hand, discrepancies in the CP asymmetries between Bd-

and Bs-processes at O(y) can be attributed to the mixing parameters y and ΦM .

5. Standard model predictions

CP asymmetries in the decays of hadrons are in the SM solely induced by the CKM matrix.

For the b → s transitions under consideration here, the requisite weak phase difference

stems from λ̂u = VubV
∗
us/VtbV

∗
ts. Therefore, all CP asymmetries in B̄ → K̄∗(→ K̄π)l̄l decays

discussed here receive an overall suppression by Im[λ̂u] ≃ η̄λ2 of order 10−2, where λ and

η̄ denote parameters of the Wolfenstein parametrization of the CKM matrix.

We work out the SM CP asymmetries in B̄ → K̄∗(→ K̄π)l̄l decays in the low-q2 region

using QCDF at NLO in αs and leading order 1/E. Analytical expressions for the asymme-

tries are given in appendix D. The CP asymmetries in the SM can be obtained by setting

the NP Wilson coefficients C
(′),NP
7,9,10 = 0, see appendix B for the effective Hamiltonian used.

Details on the QCDF framework and the transversity amplitudes are given in appendix C.

We take the B → K∗ form factors from light cone QCD sum rules (LCSR) calculations [25],

see appendix E. Our numerical input is compiled in table 1. We checked that our findings

for the branching ratio and the forward-backward asymmetry of B̄ → K̄∗l̄l decays agree

for the given input with [12, 13]. Our predictions always refer to neutral B-decays unless

otherwise stated.
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The three main uncertainties in the asymmetries come from the form factors ξ‖ and

ξ⊥, the variation of the renormalization scale µb and the CKM parameters. We vary the

scale between mb/2 and 2mb and allow for an uncertainty of 11% and 14% for ξ⊥ and ξ‖,

respectively. The CKM input is given in table 1. For the total uncertainty estimate, all

three sources of uncertainty are added in quadrature.

In figure 1 we show the T-odd CP asymmetries AD
7,8 and the T-even ones ACP, A

D
4,5

and A6 as a function of q2. The various bands indicate the uncertainties due to the form

factors, the CKM parameters, µb and the total uncertainty. The asymmetries A3 and A9

are not shown, since they vanish in the SM at lowest order in 1/E. (A small finite value is

induced by the strange quark mass.) Hence, their leading contributions may arise as

A3,9 ∼ Im[λ̂u]O(Λ/E) ∼ O(10−3). (5.1)

The LO predictions for the CP asymmetries are also included in figure 1. The higher

order αs-corrections increase the size of the CP asymmetries. For AD
7 and AD

8 this happens

because their respective LO values are suppressed by cancellations. Specifically, in the SM

AD
7 ∼ Im[λ̂u]Re





T (u)
⊥

ξ⊥
+

q2

M2
B

T (u)
‖

ξ‖



 , (5.2)

which vanishes at LO in QCDF, see (C.4), and also [15]. (Our value of AD
7 at LO is tiny but

finite since in the numerical analysis we do not neglect kinematical factors M2
K∗/M2

B .) The

asymmetry AD
8 is subject to similar cancellations, although here an additional LO term

exists, which is, however, numerically subleading. The values of AD
7 and AD

8 are therefore

determined by the NLO αs-corrections resulting in a large µb uncertainty. The impact of the

higher order terms on the T-even asymmetries is sizeable, but less pronounced. We discuss

further details of the SM CP asymmetries in the context of the integrated CP asymmetries.

We find that all q2-integrated CP asymmetries 〈A(D)
i 〉 are less than O

(

10−2
)

in the

SM. This can be seen in table 2, where we give the results for the two cuts (q2min, q
2
max) =

(1, 6) GeV2 (upper entries) and (1, 7) GeV2 (lower entries), respectively. The uncertain-

ties from the form factors and µb are also shown separately. Due to the overall CKM

factor Im[λ̂u], all CP asymmetries suffer from a universal 15% uncertainty related to

that. The corresponding values for the NLO CP averaged decay rates are 〈NΓ〉/2 =

(1.1 ± 0.3) · 10−19 GeV and 〈NΓ〉/2 = (1.3+0.4
−0.3) · 10−19 GeV for (q2min, q

2
max) = (1, 6) GeV2

and (1, 7) GeV2, respectively, assuming B(K∗ → Kπ) = 100%. The uncertainty in the rate

is about 25 % from the form factors, 7 % from Vts and order one percent from µb.

The form factor induced uncertainty in the asymmetries depends on the amount of

cancellations between the numerator and the decay rate in the denominator. We recall

that we vary the two form factors within their uncertainties independently. Taking into

account correlations would reduce the errors in the ratios, but requires control over the

parameters of the LCSR calculation [25], which is beyond the scope of this work. Since the

decay rate is dominated by the longitudinal K∗ polarization driven by ξ‖, see the discussion

following (C.7), the strongest form factor uncertainty is seen in A6 being proportional to
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Figure 1: The CP asymmetries ACP,6(q
2) and AD

4,5,7,8(q
2) in the SM in the low-q2 region at LO

and NLO in QCDF. The various bands show the uncertainty due to the form factors, the CKM

parameters and µb separately, whereas the overall band indicates the total uncertainty.

ξ2⊥. The other asymmetries AD
i , i = 4, 5, 7, 8 with numerator ∝ ξ‖ξ⊥ receive more efficient

cancellations.

As can be seen from table 2, 〈ACP〉, 〈AD
7 〉 and 〈AD

8 〉 exhibit a massive µb dependence of

order 50 %. The CP asymmetries A
(D)
i with i = 4, 5, 6 are not subject to the cancellations

mentioned after (5.2) and have a smaller residual µb uncertainty below ten percent. The

µb dependence of 〈A6〉 of a few percent is accidentally small due to significant cancellations

between different q2-regions, see the crossing of the µb bands in A6 near q2 ≃ (3− 4)GeV2

in figure 1.
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SM ·10−3 ξ⊥,‖[%] µb[%] SM LO ·10−3 SM(B∓) ·10−3

〈ACP〉
4.2+1.7

−2.5
+19
−24

+33
−51 3.0+1.2

−1.5 10.0+2.3
−2.9

4.8+1.7
−2.4

+13
−17

+29
−44 3.1+1.2

−1.6 9.9+2.2
−2.8

〈AD
4 〉 −1.8+0.3

−0.3
+11
−8

+2
−6 −0.7+0.4

−0.4 −0.7+0.4
−0.3

−2.0+0.4
−0.4

+11
−8

+7
−8 −0.8+0.5

−0.4 −1.1+0.4
−0.4

〈AD
5 〉 7.6+1.5

−1.6
+10
−13

+7
−8 2.7+0.8

−1.2 10.0+2.2
−2.3

7.6+1.5
−1.6

+9
−12

+7
−9 2.7+0.8

−1.2 9.8+2.1
−2.1

〈A6〉
−6.4+2.2

−2.7
+31
−39

+0
−2 −1.9+1.0

−0.9 −6.3+2.1
−2.6

−6.7+2.2
−2.7

+30
−37

+1
−3 −2.0+1.1

−1.0 −6.6+2.2
−2.7

〈AD
7 〉 −5.1+2.4

−1.6
+11
−8

+42
−26 < 10−2 −7.1+2.6

−1.9

−4.6+2.1
−1.4

+10
−6

+42
−25 −6.5+2.3

−1.7

〈AD
8 〉 3.5+1.4

−2.0
+7.4
−10

+37
−53 0.2+0.04

−0.08 3.4+1.4
−2.0

3.1+1.3
−1.7

+6
−10

+37
−53 0.14+0.03

−0.06 3.1+1.3
−1.8

〈A3,9〉† O (1) O (1) O (1)

Table 2: SM predictions for the integrated CP asymmetries in units of 10−3 with the integration

boundaries (q2min, q
2
max) = (1, 6), (1, 7) GeV2 (from top to bottom). We take into account uncertain-

ties from the form factors, the scale dependence µb and the CKM parameters, all of them added in

quadrature for the total uncertainty. The relative uncertainties due to ξ⊥, ξ‖ and µb are also shown

separately. The asymmetries at LO in αs and the NLO ones for charged B-decays are given as well,

see text for details. †The leading contributions 〈A3,9〉 in the SM are power counting estimates only.

Furthermore, we study the impact of higher order contributions in QCDF on the

〈A(D)
i 〉. The shift from LO in αs to NLO is substantial. Switching off the spectator

interactions reduces the size of 〈AD
7,8〉 by about 10 %, and by less for the other asymmetries.

We also give in table 2 the NLO SM predictions for charged B-decays. The splitting

between the CP asymmetries in neutral versus charged B-decays is dominated by weak

annihilation contributions from current-current operators and varies a lot in size: 〈AD
5,7〉

(〈ACP〉) increase by O(30%) (a factor of two) from neutral to charged B-decays, whereas

〈AD
4 〉 decreases by ∼ 1/2. The splitting for 〈A(D)

6,8 〉 is at the few percent level.

The SM predictions for the untagged, time-integrated CP asymmetries 〈A(D)mix
i 〉, i =

5, 6, 8, 9, in B̄s, Bs → φ(→ K+K−)l̄l decays (4.7) can be inferred from the 〈A(D)
i 〉 in neutral

Bd-decays, which are given in table 2. Corrections arise from SU(3) flavor breaking, which

is expected to be small in the ratios, from the Bs-width difference at the level of ten

percent and from spectator interactions. All these effects are subdominant with respect to

the theoretical uncertainties of the SM predictions.

6. Beyond the standard model

This section contains the model-independent analysis of the CP asymmetries. We consider
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observable SM data

B(B̄ → Xsγ)
a (3.15 ± 0.23) · 10−4 [34] (3.52 ± 0.25) · 10−4 [3]

Sb
K∗γ (−2.8+0.4

−0.5) · 10−2 −0.19 ± 0.23 [3, 31]

B(B̄ → Xs l̄l)|[1,6] (1.59 ± 0.11) · 10−6 [35] (1.60 ± 0.51) · 10−6 [33]

B(B̄ → Xs l̄l)|[>0.04] (4.15 ± 0.70) · 10−6 [21] (4.5 ± 1.0) · 10−6 [24]

〈AFB〉c[high q2] < 0 −(0.76+0.52
−0.32 ± 0.07) [6], also [4, 5]

B(B̄s → µ̄µ) ≃ 3 · 10−9 < 4.7 · 10−8 at 90% C.L. [32]

Table 3: Relevant b→ sγ and b→ sl̄l observables. aWith photon energy cut Eγ > 1.6GeV. bSM

value obtained with ms = 0.12 GeV. cNote the different lepton angle convention between [5, 6] and

this work.

NP contributions to the operators O7,9,10 which are part of the effective Hamiltonian (B.1)

of the SM, as well as NP contributions to the chirality flipped ones O′
7,9,10. We allow the

respective NP coefficients CNP
i and C

′NP
i = C ′

i for i = 7, 9, 10 to vary in magnitude and

phase, denoted by φi, within the constraints from the FCNC B-decay data. The radiative

and semileptonic b → s transitions are the most important ones for our analysis. The

relevant data and SM predictions are given in table 3.

In our analysis the NP Wilson coefficients are leading order coefficients. All Wilson

coefficients are understood as evaluated at the low, µb-scale. We start with a discussion of

the experimental constraints.

6.1 Experimental constraints

The radiative decays induced by b → sγ probe the electromagnetic dipole coefficients

C7 and C ′
7. In the NP scenarios considered here, the flipped dipole coefficient has no

interference terms in the radiative decay rates. Hence, these observables constrain only the

magnitude of C ′
7 and not its phase.

We take into account the B̄ → Xsγ branching ratio for which we adopt the NNLO SM

results from [34]. To account for the missing higher order calculation of the beyond-the-SM

amplitude, we take for the theoretical uncertainty of the NP contribution twice the SM

uncertainty. We apply the experimental constraints at 90 % C.L. We checked that the

direct CP asymmetry in B̄ → Xsγ, e.g., [36], does not give constraints beyond those from

the B̄ → Xsγ branching ratio.

The time-dependent CP asymmetry SK∗γ in B̄d, Bd → K∗0(→ K0π0)γ [37] is impor-

tant since it is sensitive to the interference of photons with different polarization, that is,

photons coming from O7 versus O′
7. To illustrate the dependence on the Wilson coeffi-

cients, we give SK∗γ at lowest order (indicated by the superscript (0) for the contributions

already present in the SM):

SK∗γ = − 2|r|
1 + |r|2 sin

(

2β − arg(C
(0)
7 C ′

7)
)

, r = C ′
7/C

(0)
7 . (6.1)

Here we assume that there is no beyond-the-SM physics in Bd−B̄d-mixing, and its phase is

given by the CKM matrix elements. We calculate the exclusive B̄ → K̄∗γ decay amplitude
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with QCD factorization following [13] including αs-corrections. The constraints from SK∗γ

exclude some regions with |r| of order one, unless the CP phases conspire to suppress the

sine in (6.1), see below.

The second class of constraints stems from the semileptonic transitions and applies

to all Wilson coefficients we consider, C
(′)
7,9,10. The inclusive B̄ → Xs l̄l decays can be

predicted with high accuracy, in the low-q2 region at the level of . 10% [35], but also the

high-q2 region is theoretically accessible. As can be seen in table 3, we utilize the integrated

branching ratios in the low-q2 region with q2 ∈ [1, 6] GeV2, B(B̄ → Xs l̄l)|[1,6], as well as

for q2 > 0.04 GeV2, B(B̄ → Xs l̄l)|[>0.04]. The latter has been experimentally obtained

by cutting out events with q2 close to the first and second charmonium resonance, hence

bears some model-dependence. We use the corresponding theory predictions from [35]

and [21], respectively. The decay distributions with NP are given in [38]. The treatment

of uncertainties is as for the B̄ → Xsγ branching ratio.

Concerning the exclusive B̄ → K̄l̄l and B̄ → K̄∗l̄l decays, we do not use the branching

ratios for our model-independent analysis: the constraints are in general weaker than the

ones from B(B̄ → Xs l̄l) due to the larger theoretical and experimental uncertainties. A

particular difficulty with the available exclusive semileptonic decay data is the presence of

measurements with different dilepton mass cuts, some of which in addition include regions

where QCDF or SCET does not apply.

We employ instead early data on the B̄ → K̄∗l̄l forward-backward asymmetry from

Belle and BaBar [4 – 6]. While these measurements have large uncertainties, both experi-

ments strongly support the sign of AFB in the high-q2 region above the second charmonium

peak to be SM-like.

A rigorous theory calculation of the exclusive B̄ → K̄∗l̄l decays in this kinematical

region can be facilitated with an operator product expansion in Λ/Q and m2
c/Q

2 where

Q = {
√

q2,mb} put forward in [39]. The leading contribution and also the order m2
c/Q

2

terms do not introduce new non-perturbative matrix elements beyond naive factorization.

Corrections start to enter at O (αsΛ/Q). The framework holds at low recoil, (MB−MK∗)2−
2MBΛ . q2 < (MB −MK∗)2, which covers the large dilepton mass region above the Ψ′

resonance, q2 & 14 GeV2.

To leading order in the 1/Q-expansion we obtain AFB at low recoil as

AFB(q2) ∝ Re

[(

Ceff
9 (q2) +

2m2
b

q2
Ceff

7

)

C∗
10 −

(

C ′
9 +

2m2
b

q2
C ′

7

)

C
′∗
10

]

. (6.2)

The effective coefficients read as Ceff
9 (q2) = C9+(4/3C1+C2)g(q

2)+· · · and Ceff
7 = C7+· · · ,

where 4/3C1 +C2 ≃ 0.61 are the dominant SM coefficients. The full expressions including

the higher order αs-corrections and the QCD penguin contributions are given in [39] and

are included in our numerical analysis. The lowest order charm loop function is given as

g(q2) =
8

27
+

4

9

(

ln
µ2

q2
+ iπ

)

, (6.3)

which agrees with the perturbative quark loop function for massless quarks. Interestingly,

the dependence on form factors can be factored out in AFB (6.2) at this order. We require

then the sign of 〈AFB〉 integrated over q2 > 14 GeV2 to be negative.
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Figure 2: Allowed regions of Wilson coefficients in specific NP scenarios after applying the

experimental constraints from radiative and semileptonic b → s processes as indicated. The black

areas are allowed by all constraints. In the left panel we show C′
7 versus CNP

7 assuming real Wilson

coefficients. We give the magnitude of CNP
10 versus its CP phase φ10 in the right panel. In both

plots all other NP Wilson coefficients have been set to zero. For details see text.

We show the impact of the FCNC constraints on the NP Wilson coefficients for two

NP scenarios in figure 2. The areas allowed by all constraints are given in black. We learn

that the observables (each shown in a different color) yield complementary information,

and that the SM is allowed, as well as many significantly different NP solutions.

In the left plot, we entertain NP only in C7 and C ′
7, and assume further no NP CP

phases. The regions allowed by B(B̄ → Xsγ), SK∗γ and B(B̄ → Xs l̄l)|[1,6] are shown as the

green ring, the red cross and the blue half circle, respectively. The impact of SK∗γ is signif-

icant. The semileptonic decay excludes in this NP scenario the flipped sign solution for the

photonic dipole coefficient C7 ≃ −CSM
7 ∼ 0.31. Note that dimensional analysis suggests

that power corrections to r of the order C2Λ/(3mbC7) ∼ 0.1 may induce a larger SM contri-

bution to SK∗γ than O(ms/mb) [40]. We show the resulting region in the C ′
7−CNP

7 -plane by

the dashed lines in the left plot of figure 2. Because of the present experimental situation,

however, the inclusion of the power corrections corresponds only to a small enlargement of

the allowed parameter space. Note also that ref. [41] estimated the non-perturbative SM

contributions to be smaller than the ones coming from naive power counting.

In the right plot we allow only for NP in C10, and show the allowed regions in |CNP
10 |

and the CP phase φ10. Fixing the sign of AFB (blue) and the semileptonic branching ratios

B(B̄ → Xs l̄l)|[1,6] (green) and B(B̄ → Xs l̄l)|[>0.04] (red) yield orthogonal constraints. An

upper bound on the magnitude of CNP
10 is obtained with the aid of AFB as |CNP

10 | . 7,

improving on the bound from the branching ratios alone, |CNP
10 | . 10.

6.2 CP asymmetries with new physics

The dependence of the CP asymmetries A
(D)
i on the Wilson coefficients can be seen from the

analytical (NLO) formulae in appendix D. We also provide numerical model-independent
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generic NP CNP
10 only C

′NP
10 only CNP

9 only

〈ACP〉 [−0.12, 0.10] [3, 8] · 10−3 SM-like [−0.02, 0.02]

〈A3〉 [−0.08, 0.08] SM-like SM-like SM-like

〈AD
4 〉 [−0.04, 0.04] [−4,−1] · 10−3 [−3,−1] · 10−3 [−0.01, 0.01]

〈AD
5 〉 [−0.07, 0.07] [−0.04, 0.04] [−0.02, 0.04] [5, 9] · 10−3

〈A6〉 [−0.13, 0.11] [−0.05, 0.05] [−9,−3] · 10−3 SM-like

〈AD
7 〉 [−0.76, 0.76] [−0.48, 0.48] [−0.38, 0.38] SM-like

〈AD
8 〉 [−0.48, 0.48] [2, 7] · 10−3 [−0.28, 0.28] [−0.17, 0.17]

〈A9〉 [−0.62, 0.60] SM-like [−0.20, 0.20] SM-like

B(B̄s → µ̄µ) < 1.4 · 10−8 < 6.3 · 10−9 < 1.3 · 10−8 SM

Table 4: The ranges of the integrated CP asymmetries 〈A(D)
i 〉 for (q2min, q

2
max) = (1, 6) GeV2 after

applying the experimental constraints at 90% C.L. for the generic NP scenario and those with NP

in C10, C
′
10 or C9 only. The upper limits on B(B̄s → µ̄µ) are also shown. For details see text.

formulae for the B̄ → K̄∗(→ K̄π)l̄l branching ratio and CP asymmetries in appendix F.

The numerators of A
(D)
CP,3,4 are sensitive to C7,9 and C ′

7,9 whereas the numerators of AD
5,7

and A6 probe C7,10 and C ′
7,10. The numerators of A

(D)
8,9 can be affected by all Wilson

coefficients considered here. Recall also that A3,9 are very sensitive to the flipped Wilson

coefficients since A3,9 vanish in the limit C ′
i → 0 at lowest order in the 1/E-expansion.

To see directly these features of the T-odd asymmetries, we provide LO formulae:

AD
7 = 2AD m̂b

ŝ
(1 − ŝ)Im

[

(C
(0)
10 − C ′

10)(C
eff(0)
7 − C ′

7)
∗
]

, (6.4)

AD
8 = ADβl

{

Im

[

C
(0)
9 C ′∗

9 +C
(0)
10 C

′∗
10 +

4m̂2
b

ŝ
C

eff(0)
7 C ′∗

7

+
m̂b

ŝ

(

(1 − ŝ)(C ′
7C

′∗
9 − C

eff(0)
7 C

(0)∗
9 ) + (1 + ŝ)(C

eff(0)
7 C ′∗

9 − C ′
7C

(0)∗
9 )

)

]

− Re(Y (0))Im

[

C ′
9 +

m̂b

ŝ

(

(1 − ŝ)C
eff(0)
7 + (1 + ŝ)C ′

7

)

]}

+ O(λ̂u), (6.5)

A9 = 4ADβl

{

Im

[

C
(0)
9 C ′∗

9 + C
(0)
10 C

′∗
10 +

4m̂2
b

ŝ2
C

eff(0)
7 C ′∗

7 +
2m̂b

ŝ
(C

eff(0)
7 C ′∗

9 − C ′
7C

(0)∗
9 )

]

− m̂b

ŝ
Re(Y (0))Im

[

2C ′
7 +

m̂b

ŝ
C ′

9

]}

+ O(λ̂u), (6.6)

where for AD
8 , A9 we neglected SM CP violation suppressed by λ̂u, see appendix D for

details.

We work out the CP asymmetries 〈A(D)
i 〉 with NP by taking into account the experi-

mental constraints given in table 3. We consider scenarios with generic NP, that is, when

all six NP Wilson coefficients are varied independently, and when varying only one coeffi-

cient at a time. The asymmetries are integrated over low dilepton masses, q2 ∈ [1, 6] GeV2.

Theoretical input parameters used are fixed at their central values.
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7,8,9〉 for (q2min, q
2
max) =

(1, 6) GeV2 on NP Wilson coefficients after applying the experimental constraints. In each plot all

other NP Wilson coefficients have been set to zero.

In table 4 we show the allowed ranges of the CP asymmetries in various NP scenarios.

Numerically we find that the CP asymmetries can deviate significantly from their SM

values, which are doubly Cabibbo-suppressed and below the percent level. As anticipated,

the T-even CP asymmetries can be enhanced by one order of magnitude up to . 10%. The

T-odd CP asymmetries A
(D)
7,8,9 can receive even stronger NP enhancements, up to order one.

There is also some residual dependence in the A
(D)
i on all NP Wilson coefficients from

the normalization to the CP averaged decay rate. Hence, even though the numerator of

some CP asymmetries is independent of a particular Wilson coefficient, the asymmetries

can be modified from their respective SM values given in table 2. These small effects are

included in table 4 whenever they are distinguishable from the SM at 1σ, otherwise called

SM-like.

Also the purely leptonic decay B̄s → µ̄µ has strong sensitivity to NP contributions

in O10 and O′
10 since B(B̄s → µ̄µ) ∝ |C10 − C ′

10|2, see, e.g., [22]. We find a possible

enhancement of B(B̄s → µ̄µ) up to almost an order of magnitude in NP scenarios with
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Figure 4: Correlations between the CP asymmetries 〈AD
7 〉 and 〈A6〉 in different scenarios of NP:

generic NP, where all six coefficients are varied, and with NP in C10 and C7 only.

these coefficients modified, see table 4. The largest branching ratio, obtained with generic

NP, is still a factor of two below the current experimental upper bound given in table 3.

Furthermore, B(B̄s → µ̄µ) can be suppressed with respect to the SM by cancellations

between C10 and C ′
10. A lower bound exists from data on the decays B → K(∗) l̄l, which

are sensitive to |C10 + C ′
10| [22]. However, in models containing both CNP

10 and C ′NP
10 only

a very weak bound on B(B̄s → µ̄µ) can be obtained. We conclude that improved data on

or a discovery of B̄s → µ̄µ decays will have a strong impact on this type of analysis.

In figure 3 we show the dependence of the T-odd CP asymmetries 〈A(D)
7,8,9〉 integrated

over (q2min, q
2
max) = (1, 6) GeV2 on the NP Wilson coefficients as indicated. In the plots all

other NP Wilson coefficients have been set to zero and the experimental FCNC constraints

have been applied. The dependence of the asymmetries on the phases is very strong,

making the CP asymmetries great probes of CP violation beyond the SM.

In figure 4 〈A6〉 is shown against 〈AD
7 〉 for different NP scenarios. Both CP asymmetries

are very sensitive to the phase of C
(′)
10 , and AD

7 depends in addition on the dipole coefficients

C
(′)
7 . Correlations of this type can identify the nature of NP.

7. Summary

We exploited the full angular analysis in exclusive semileptonic B̄ → K̄∗(→ K̄π)l̄l and

B̄s → φ(→ K+K−)l̄l decays as a means of testing the SM and searching for new CP

phases in b → s transitions. From the angular distributions in (2.1) and (2.5) seven CP

asymmetries A
(D)
3...9 in addition to the one in the decay rate can be accessed. We find that

the SM predictions, valid for low dilepton masses, have rather large uncertainties ∼ 20%

for AD
4,5, ∼ 50% for ACP, A6, A

D
7,8 and order one for A3,9, but the tiny magnitude of the CP

asymmetries . 10−2 makes them all ideal to search for a variety of different NP effects.
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In particular, large NP effects are possible, which survive also the current experimental

FCNC constraints. We summarize here specific features of the asymmetries:

– AD
7 , A

D
8 , A9 are T-odd and can be order one with New Physics.

– AD
5 , A6, A

D
8 , A9 are CP-odd and can be obtained without tagging from dΓ + dΓ̄.

– A3, A9 are very sensitive to right-handed currents.

– A3, A9, (A6) can be extracted from a single-differential distribution in φ(θl).

– AD
7 is very sensitive to the phase of the Z-penguins ∼ C

(′)
10 .

Due to the CP-odd feature of some of the asymmetries and the width difference in

the Bs-system, further CP asymmetries A
(D)mix
i can be extracted from untagged, time-

integrated B̄s, Bs → φ(→ K+K−)l̄l decays. In the presence of NP with large CP phases

we expect order one (order ten percent) CP asymmetries related to the T-odd (T-even)

asymmetries A
(D)mix
8,9 (A

(D)mix
5,6 ). The difference between the asymmetries originating from

Bd- and Bs-decays is dominated by the difference in mixing.

A comparison of the Bd and Bs asymmetries hence probes the width difference and

the mixing phase. One possibility is that the A
(D)mix
i are order 10 percent, whereas A

(D)
i

are negligible, indicating that there is beyond-the-SM CP violation in ∆B = 2 processes

only. Note that a measurement of the A
(D)mix
i is probably the only easy way to study CP

violation in semileptonic rare b→ s transitions with Bs-mesons.

We conclude that the CP asymmetries from the angular analysis map out precisely

the CP properties of several Wilson coefficients. The minimal, that is, CKM description

of CP violation can be disproved. This study can be extended to include also lepton flavor

dependent effects along the lines of [42].

The prospects for studying rare dimuon modes at the LHC are promising: For an

integrated luminosity of 2 fb−1, i.e., after one nominal year of data taking, a few thousand

Bd → K∗0µ+µ− events are expected at LHCb, allowing a measurement of the branching

ratio and its CP asymmetry at the percent level [43]. The CP asymmetries proposed here

require further information on angular distributions, thus higher statistics. A dedicated

sensitivity study, also taking into account suitable cuts, would be desireable.
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A. Angular coefficients J
(a)
i

Here the functions J
(a)
i in the angular distribution (2.1) are given in terms of the transver-

sity amplitudes A⊥,‖,0,t [9]:

Js
1 =

3

4

{

(2 + β2
l )

4

[

|AL
⊥|2 + |AL

‖ |2 + (L→ R)
]

+
4m2

l

q2
Re
(

AL
⊥A

R
⊥
∗
+AL

‖ A
R
‖

∗
)

}

, (A.1)

Jc
1 =

3

4

{

|AL
0 |2 + |AR

0 |2 +
4m2

l

q2

[

|At|2 + 2Re(AL
0 A

R
0
∗
)
]

}

, (A.2)

Js
2 =

3β2
l

16

[

|AL
⊥|2 + |AL

‖ |2 + (L→ R)

]

, (A.3)

Jc
2 = −3β2

l

4

[

|AL
0 |2 + (L→ R)

]

, (A.4)

J3 =
3

8
β2

l

[

|AL
⊥|2 − |AL

‖ |2 + (L→ R)

]

, (A.5)

J4 =
3

4
√

2
β2

l

[

Re(AL
0 A

L
‖
∗
) + (L→ R)

]

, (A.6)

J5 =
3
√

2

4
βl

[

Re(AL
0 A

L
⊥
∗
) − (L→ R)

]

, (A.7)

J6 =
3

2
βl

[

Re(AL
‖ A

L
⊥
∗
) − (L→ R)

]

, (A.8)

J7 =
3
√

2

4
βl

[

Im(AL
0 A

L
‖

∗
) − (L→ R)

]

, (A.9)

J8 =
3

4
√

2
β2

l

[

Im(AL
0 A

L
⊥
∗
) + (L→ R)

]

, (A.10)

J9 =
3

4
β2

l

[

Im(AL
‖
∗
AL

⊥) + (L→ R)

]

, (A.11)

where

βl =

√

1 − 4m2
l

q2
, (A.12)

and the transversity amplitudes in QCDF can be seen in (C.5).

B. The effective Hamiltonian

We use the ∆B = 1 effective Hamiltonian for b→ s transitions, e.g., [44, 13]

Heff = −4GF√
2
VtbV

∗
ts

(

H(t)
eff + λ̂uH(u)

eff

)

, λ̂u = VubV
∗
us/VtbV

∗
ts, (B.1)

where Vij denote CKM matrix elements and we used unitarity to write the basis as

H(t)
eff = C1Oc

1 + C2Oc
2 +

10
∑

i=3

CiOi, H(u)
eff = C1(Oc

1 −Ou
1 ) + C2(Oc

2 −Ou
2 ). (B.2)
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Here, the Ou,c
1,2 denote current-current operators whereas Oi for i = 3, 4, 5, 6 are QCD-

penguin operators, defined as in [45]. We further take into account the following dipole

and semileptonic operators

O7 =
e

(4π)2
mb[s̄σ

µνPRb]Fµν , O′
7 =

e

(4π)2
mb[s̄σ

µνPLb]Fµν ,

O9 =
e2

(4π)2
[s̄γµPLb][l̄γ

µl], O′
9 =

e2

(4π)2
[s̄γµPRb][l̄γ

µl],

O10 =
e2

(4π)2
[s̄γµPLb][l̄γ

µγ5l], O′
10 =

e2

(4π)2
[s̄γµPRb][l̄γ

µγ5l], (B.3)

where PR/L = (1±γ5)/2 denote chiral projectors and mb(µb) is the MS b-quark mass at the

scale µb. Since in the SM C ′
i ∼ ms/mbCi, the chirality flipped operators O′

7,9,10 can only

compete with O7,9,10 in models beyond the SM. The Wilson coefficients are decomposed

into their SM and NP parts as Ci = CSM
i + CNP

i and C ′
i = C ′NP

i for i = 7, 9, 10.

C. Transversity amplitudes at NLO

Starting from the K∗ transversity amplitudes Ai(q
2), i = {⊥, ‖, 0, t} in naive factorization

(see, e.g., [9]), the NLO αs-corrections at large recoil using QCDF [12, 13] can be taken

into account by the replacements [9, 10]

(Ceff
7 + C

′

7)Ti(q
2) → T +

i , (Ceff
7 −C

′

7)Ti(q
2) → T −

i , Ceff
9 (q2) → C9, (C.1)

where

T ±
1 = T ±

⊥ , T −
2 =

2E

MB
T −
⊥ , T −

3 = T −
⊥ + T −

‖ . (C.2)

The functions T −
⊥,‖ can be obtained from the T⊥,‖ given in [12, 13] by substituting Ceff

7 with

Ceff
7 − C

′

7 whereas T +
⊥ is obtained from T⊥ by replacing Ceff

7 with Ceff
7 +C

′

7.

In (C.1), the Ti, i = 1, 2, 3 denote the QCD tensor form factors defined in appendix E.

The effective electroweak Hamiltonian employed is given in appendix B. The effective

coefficients Ceff
7,8 and Ceff

9 (q2) have been introduced to absorb 1-loop matrix elements of

4-quark operators [46]. Here, such contributions to O9 are contained in T ±
i together with

further corrections beyond naive factorization. We take Ceff
7 and C9,10 at NNLL in the SM

at the scale µb. In the NP scenarios discussed in this work, C
′eff
7 equals C ′

7.

In the framework of QCDF, the functions T ±
⊥,‖ are known at NLO in αs for the SM

operators and the corresponding chirality flipped operators, see (B.3). The T ±
⊥,‖ have the

following CKM and QCD structure

T ±
a = T ±(t)

a + λ̂uT (u)
a , (C.3)

T ±(t)
a = T ±(t),LO

a +
αs

4π
T ±(t),NLO

a , T (u)
a = T (u),LO

a +
αs

4π
T (u),NLO

a ,
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where a =⊥, ‖. At LO in αs (denoted by the superscript (0)) they read

T ±(t),LO
⊥ = ξ⊥

[

C
eff(0)
7 ± C

′(0)
7 +

q2

2mbMB
Y (0)

]

, T (u),LO
⊥ = ξ⊥

q2

2mbMB
Y (u)(0), (C.4)

T −(t),LO
‖ = −ξ‖

[

C
eff(0)
7 − C

′(0)
7 +

MB

2mb
Y (0)

]

+HS, T (u),LO
‖ = −ξ‖

MB

2mb
Y (u)(0) +HS,

where Y (q2) and Y (u)(q2) contain 1-loop contributions of four-quark operators ∼ s̄bq̄q with

an imaginary part for q2 > 4m2
q . Since the charm threshold is at the very upper end - if not

outside - the q2-region where the 1/E expansion works and the lighter quarks induce either

CKM suppressed or penguin contributions, the resulting strong phase is small. In (C.4),

spectator effects are denoted by HS. At lowest order, these are in T (u),LO
‖ and T −(t),LO

‖ .

The latter is suppressed by penguin coefficients, whereas the former is non-zero only for

charged B± → K∗± l̄l decays (weak annihilation). At higher order in αs, strong phases

are further generated in T (i),NLO
a and from spectator interactions [12, 13], which have been

included in our numerical analysis. The form factors ξ⊥ and ξ‖ are discussed in appendix E.

The transversity amplitudes in the presence of NP Wilson coefficients within QCDF

and neglecting kinematical terms2 M2
K∗/M2

B read as

AL,R
⊥ = +

√
2NMB(1 − ŝ)

{

[

(C9 + C ′
9) ∓ (C10 + C ′

10)
]

ξ⊥ +
2m̂b

ŝ
T +
⊥

}

,

AL,R
‖ = −

√
2NMB(1 − ŝ)

{

[

(C9 − C ′
9) ∓ (C10 − C ′

10)
]

ξ⊥ +
2m̂b

ŝ
T −
⊥

}

,

AL,R
0 = −NM

2
B(1 − ŝ)2

2MK∗

√
ŝ

{

[

(C9 − C ′
9) ∓ (C10 − C ′

10)
]

ξ‖ − 2m̂bT −
‖

}

,

At =
NM2

B(1 − ŝ)2

MK∗

√
ŝ

(C10 − C ′
10)

ξ‖

∆‖
, (C.5)

where

ŝ =
q2

M2
B

, m̂b =
mb

MB
, N =

[

G2
Fα

2
e

3 · 210 π5MB
|VtbV

∗
ts|2 ŝ

√
λβl

]1/2

(C.6)

and λ = M4
B +M4

K∗ +q4−2(M2
BM

2
K∗ +M2

Bq
2 +M2

K∗q2). Note that At contributes only for

ml 6= 0 and contains ∆‖, see [12], which represents form factor symmetry breaking QCD

corrections. Note that helicity conservation dictates AL,R
⊥ = −AL,R

‖
for C ′

i = 0 up to 1/E

corrections [47].

The dilepton spectrum defined in (2.7) can be written in terms of the transversity

amplitudes (C.5) as

dΓ

dq2
= |AL

⊥|2 + |AL
‖ |2 + |AL

0 |2 + (L→ R) + O
(

m2
l /q

2
)

(C.7)

2These formally subleading terms in the 1/E expansion are included in the numerical evaluation.

– 21 –



J
H
E
P
0
7
(
2
0
0
8
)
1
0
6

up to contributions suppressed by the lepton mass. The dependence on the form factors

stems from ξ⊥ for AL,R
⊥ , AL,R

‖ and ξ‖ for AL,R
0 . Since the longitudinal amplitudes AL,R

0 are

enhanced by MB/MK∗ , see (C.5), they imply a stronger dependence of dΓ/dq2 on ξ‖ than

on ξ⊥. Quantitatively, we find in the SM that for the cuts (q2min, q
2
max) = (1, 6) GeV2 and

(1, 7) GeV2 the contribution from the longitudinal K∗ to the total decay rate,

FL =
〈|AL

0 |2 + |AR
0 |2〉

〈dΓ/dq2〉 , (C.8)

is 0.73+0.08
−0.10 and 0.72+0.08

−0.11, respectively.

D. CP asymmetries and AFB beyond the SM

Here we give analytical expressions of the CP asymmetries defined in (3.2) and (3.3) in-

cluding contributions from NP operators (B.3). The asymmetries have been obtained from

the transversity amplitudes in QCDF, see (C.5), valid in the low dilepton mass region. The

coefficients Ceff
7 = Ceff,SM

7 + CNP
7 and C ′

7 are taken into account by T ±
⊥,‖. Except for ACP,

the CP asymmetries are given with their full lepton mass dependence which is confined to

powers of βl. Neglecting kinematical factors M2
K∗/M2

B , the CP asymmetries as a function

of the dilepton mass can be written as

ACP = A8m̂b

3ŝ
Re

{

ξ2‖

ξ2⊥

M2
B

M2
K∗

(1 − ŝ)2

8

[

m̂b

|T −
‖ |2

ξ2‖
−

T −
‖

ξ‖
(C9 − C ′

9)
∗

]

+
m̂b

ŝ

|T +
⊥ |2 + |T −

⊥ |2
ξ2⊥

+
T +
⊥ − T −

⊥

ξ⊥
C∗

9 +
T +
⊥ + T −

⊥

ξ⊥
C ′∗

9 − (δW → −δW )

}

+ O
(

m2
l /q

2
)

, (D.1)

A3 =A2m̂bβl

ŝ
Re

{

m̂b

ŝ

|T +
⊥ |2−|T −

⊥ |2
ξ2⊥

+
T +
⊥ −T −

⊥

ξ⊥
C∗

9 +
T +
⊥ +T −

⊥

ξ⊥
C ′∗

9 −(δW →−δW )

}

, (D.2)

AD
4 =−AD m̂bβl

2ŝ
Re

{(

T −
⊥

ξ⊥
−ŝ

T −
‖

ξ‖

)

(C9−C ′
9)

∗−2m̂b

T −
⊥ (T −

‖ )∗

ξ⊥ξ‖
−(δW →−δW )

}

, (D.3)

AD
5 = −AD m̂b

ŝ
Re

{(

T −
⊥

ξ⊥
− ŝ

T −
‖

ξ‖

)

C10 −
(

T −
⊥

ξ⊥
+ ŝ

T −
‖

ξ‖

)

C ′∗
10 − (δW → −δW )

}

, (D.4)

A6 = A4m̂b

ŝ
Re

{T +
⊥ + T −

⊥

ξ⊥
C∗

10 −
T +
⊥ − T −

⊥

ξ⊥
C ′∗

10 − (δW → −δW )

}

, (D.5)

AD
7 = AD m̂b

ŝ
Im

{

(C10 − C ′
10)

(

T −
⊥

ξ⊥
+ ŝ

T −
‖

ξ‖

)∗

− (δW → −δW )

}

, (D.6)

AD
8 = AD βl

2
Im

{

2m̂2
b

ŝ

T +
⊥ (T −

‖ )∗

ξ⊥ξ‖
− m̂b

ŝ

[

(

T +
⊥

ξ⊥
+ ŝ

T −
‖

ξ‖

)

C∗
9 −

(

T +
⊥

ξ⊥
− ŝ

T −
‖

ξ‖

)

C ′∗
9

]

+C9C
′∗
9 + C10C

′∗
10 − (δW → −δW )

}

, (D.7)
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A9 = −A 2βlIm

{

2m̂2
b

ŝ2
T +
⊥ (T −

⊥ )∗

ξ2⊥
+
m̂b

ŝ

[T +
⊥ − T −

⊥

ξ⊥
C∗

9 − T +
⊥ + T −

⊥

ξ⊥
C ′∗

9

]

−C9C
′∗
9 − C10C

′∗
10 − (δW → −δW )

}

, (D.8)

where (δW → −δW ) is short hand notation for conjugating all weak phases. Furthermore,

A =
G2

F α
2
e

32 · 26 π5
|VtbV

∗
ts|2

M3
Bβ

2
l ŝ(1 − ŝ)3ξ2⊥
NΓ

,

AD =
G2

F α
2
e

32 · 26 π5
|VtbV

∗
ts|2

M4
Bβ

2
l

√
ŝ(1 − ŝ)4ξ‖ξ⊥

MK∗NΓ
, (D.9)

where NΓ is defined in (3.2).

At lowest order in αs, the expressions for the above CP asymmetries simplify by

T +,LO
⊥ − T −,LO

⊥

ξ⊥
= 2C

′(0)
7 , (D.10)

T +,LO
⊥ + T −,LO

⊥

ξ⊥
= 2C

eff(0)
7 +

ŝ

m̂b
(Y (0) + λ̂uY

(u)(0)), (D.11)

T ±,LO
⊥

ξ⊥
+ ŝ

T −,LO
‖

ξ‖
=







(1 − ŝ)C
eff(0)
7 + (1 + ŝ)C

′(0)
7

(1 − ŝ)(C
eff(0)
7 − C

′(0)
7 )

. (D.12)

Note that in the SM, or more general, in any model without right-handed contributions to

the electromagnetic dipole operator, T +
⊥ = T −

⊥ , see appendix C.

The lepton forward-backward asymmetry in QCDF is written as

AFB =
12βlN

2M2
B(1 − ŝ)2ξ2⊥

dΓ/dq2
(D.13)

× Re

{[

C9 +
m̂b

ŝ

(T +
⊥ + T −

⊥ )

ξ⊥

]

C∗
10 −

[

C ′
9 +

m̂b

ŝ

(T +
⊥ − T −

⊥ )

ξ⊥

]

C
′∗
10

}

.

E. B → K∗ form factors at large recoil

The B → K∗ matrix element can be parametrized in terms of seven q2-dependent QCD

form factors V,A0,1,2 and T1,2,3 as

〈K∗(pB − q)|s̄γµ(1 − γ5)b|B(pB)〉 = −2ǫµναβε
∗νpα

Bq
β V

MB +MK∗

(E.1)

− iε∗µ(MB +MK∗)A1 + i(2pB − q)µ(ε∗ · q) A2

MB +MK∗

+ iqµ(ε∗ · q)2MK∗

q2
[A3 −A0],

〈K∗(pB − q)|s̄σµνq
ν(1 + γ5)b|B(pB)〉 = −2i ǫµναβε

∗νpα
Bq

β T1 (E.2)

+ [ε∗µ(M2
B −M2

K∗) − (ε∗ · q)(2pB − q)µ]T2 + (ε∗ · q)
[

qµ − q2

M2
B −M2

K∗

(2pB − q)µ

]

T3
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r1 r2 m2
R [ GeV2] m2

fit [ GeV2] F (0) ∆0F (0) ∆a1
F (0)

V 0.923 −0.511 5.322 49.40 0.411 0.033 0.44δa1

A1 0.290 40.38 0.292 0.028 0.33δa1

A2 −0.084 0.342 52.00 0.259 0.027 0.31δa1

Table 5: The parameters r1,2,m
2
R and m2

fit describing the q2 dependence of the form factors V

and A1,2 in the LCSR approach [25]. Also shown are the corresponding values of the form factors

at q2 = 0, F (0), their uncertainties independent of the Gegenbauer moment a1,K∗ , ∆0F (0) and the

uncertainties induced by a1,K∗ in terms of δa1
= (a1,K∗(1 GeV) − 0.1), ∆a1

F (0).

and

A3 =
MB +MK∗

2MK∗

A1 −
MB −MK∗

2MK∗

A2, (E.3)

where ǫ∗µ denotes the polarization vector of the K∗ and pµ
B the four momentum of the B

meson. The QCD form factors obey symmetry relations in the large recoil limit and can be

expressed at leading order in the 1/E expansion in terms of two universal form factors ξ⊥
and ξ‖ [11]. Symmetry breaking corrections at order αs have been calculated using QCDF

in ref. [48]. We employ a factorization scheme within QCDF where the ξ⊥,‖ are related to

the V,A1,2 as [13]

ξ⊥ =
MB

MB +MK∗

V, ξ‖ =
MB +MK∗

2E
A1 −

MB −MK∗

MB
A2. (E.4)

For the q2 dependence of the universal form factors we adopt the findings from light

cone sum rule (LCSR) calculations [25]. Here the q2 dependence is parametrized as

V (q2) =
r1

1 − q2/m2
R

+
r2

1 − q2/m2
fit

, (E.5)

A1(q
2) =

r2
1 − q2/m2

fit

, (E.6)

A2(q
2) =

r1
1 − q2/m2

fit

+
r2

(1 − q2/m2
fit)

2
, (E.7)

where the fit parameters r1,2,m
2
R and m2

fit are shown in table 5. Also given in this table

are the values of the form factors at q2 = 0 and the corresponding parametric uncertainties

within the LCSR approach. We give the uncertainties independent of the Gegenbauer

moments a
⊥,‖
1,K∗ and the ones due to a

⊥,‖
1,K∗ separately. The relative uncertainty of the form

factors V (0), A1(0) and A2(0) amounts to 8%, 10% and 10% without, and 11%, 12% and

14% after adding the a1,K∗ — see table 1 for the numerical value — induced uncertainty

in quadrature, respectively. We use the total relative uncertainty from maximal recoil as

an estimate for the form factor uncertainties for q2 > 0. The form factors ξ⊥,‖ defined via

(E.4) are shown as a function of q2 in figure 5. Here the bands indicate the uncertainty in

ξ⊥ and ξ‖ of 11% and 14%, respectively.

F. Model-independent CP asymmetries beyond the SM

We give numerical formulae for the q2-integrated quantities B = τB0

〈

dΓ/dq2
〉

, B =

τB0

〈

dΓ̄/dq2
〉

and Num
〈

A
(D)
i

〉

for q2 ∈ [1, 6] GeV2 in terms of the NP Wilson coefficients
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Figure 5: The universal form factors ξ⊥ and ξ‖ in the low-q2 region and their uncertainty indicated

by the bands.

CNP
i . Here, Num

〈

A
(D)
i

〉

denotes the numerators of the CP asymmetries multiplied by the

B-meson lifetime such that the normalized CP asymmetries (see (3.5)) are obtained from

〈

A
(D)
i

〉

=
Num

〈

A
(D)
i

〉

B + B
. (F.1)

The dependence of the branching ratios on the NP Wilson coefficients can be written as

X=XSM



1+
∑

i

(

ai|CNP
i |2+biReCNP

i +ciImC
NP
i

)

+
∑

j>i

dijRe(CNP
i CNP∗

j )



 for B,B, (F.2)

whereas the numerators of the T-odd CP asymmetries are parametrized as

X = XSM



1 +
∑

i

(

biReCNP
i + ciImC

NP
i

)

+
∑

j>i

eijIm(CNP
i CNP∗

j )



 for Num
〈

AD
7,8

〉

.

(F.3)

The numerators of the T-even CP asymmetries read as

X = XSM

[

1 +
∑

i

(

biReCNP
i + ciImC

NP
i

)

]

for Num 〈ACP,6〉 ,Num
〈

AD
4,5

〉

. (F.4)

Here, the summations are over i, j = 7, 7′, 9, 9′, 10, 10′ and XSM denotes the SM prediction

of the corresponding quantity. Note that for Num 〈A3,9〉 we have set XSM to zero, see

section 5, and, hence, the corresponding formulae read as

X =
∑

i

(

biReCNP
i + ciImC

NP
i

)

for Num 〈A3〉 , (F.5)

X =
∑

i

(

biReCNP
i + ciImC

NP
i

)

+
∑

j>i

eijIm(CNP
i CNP∗

j ) for Num 〈A9〉 . (F.6)
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XSM i = 7 i = 7′ i = 9 i = 9′ i = 10 i = 10′

BSM
ai 2.634 2.634 0.035 0.035 0.035 0.035
bi −0.271 −0.373 0.162 −0.179 −0.288 0.205

= 2.444 · 10−7 ci −0.156 0.001 −0.009 −0.0002 0 0

BSM
ai 2.656 2.656 0.036 0.036 0.035 0.035
bi −0.312 −0.370 0.158 −0.178 −0.290 0.206

= 2.423 · 10−7 ci 0.106 0.003 0.004 0.002 0 0

Num 〈ACP〉SM bi 4.469 −0.726 0.587 −0.345 0 0
= 2.068 · 10−9 ci −30.770 −0.275 −1.500 −0.259 0 0

Num 〈A3〉SM bi −0.077 5.720 −0.012 0.378 0 0
= 0† ci 0.542 −47.174 0.081 −2.743 0 0

Num
〈

AD
4

〉

SM
bi 3.604 −3.604 0.536 −0.536 0 0

= −8.642 · 10−10 ci −1.435 1.435 −2.487 2.487 0 0

Num
〈

AD
5

〉

SM
bi 0 0 0 0 −0.244 0.068

= 3.718 · 10−9 ci 0 0 0 0 1.152 −1.258

Num 〈A6〉SM bi 0 0 0 0 −0.244 0.004
= −3.117 · 10−9 ci 0 0 0 0 1.774 −0.026

Num
〈

AD
7

〉

SM
bi 0 0 0 0 −0.244 0.244

= −2.496 · 10−9 ci −247.248 247.248 0 0 23.019 −23.019

Num
〈

AD
8

〉

SM
bi −0.491 −1.423 0.176 −0.288 0 0

= 1.706 · 10−9 ci −189.333 −170.364 −16.524 −7.160 0 26.834

Num 〈A9〉SM bi 0 −8.390 0.007 −0.491 0 0
= 0† ci −6.514 225.487 −0.568 6.064 0 31.913

Table 6: The SM predictions XSM and the corresponding coefficients ai, bi and ci for i =

7, 7′, 9, 9′, 10, 10′. †For Num 〈A3,9〉 XSM has been set to zero and the corresponding coefficients are

given in units of 10−9.

dij B B eij Num
〈

AD
7

〉

Num
〈

AD
8

〉

Num 〈A9〉†
7, 7′ −0.255 −0.257 7, 7′ 0 200.542 1801.269
7, 9 0.394 0.397 7, 9 0 −43.413 −1.547
7, 9′ −0.107 −0.108 7, 9′ 0 56.532 105.869
7, 10 0 0 7, 10 60.420 0 0
7, 10′ 0 0 7, 10′ −60.420 0 0

7′, 9 −0.107 −0.108 7′, 9 0 −56.532 −105.869
7′, 9′ 0.394 0.397 7′, 9′ 0 43.413 1.547
7′, 10 0 0 7′, 10 −60.420 0 0
7′, 10′ 0 0 7′, 10′ 60.420 0 0

9, 9′ −0.050 −0.050 9, 9′ 0 6.558 7.799

10, 10′ −0.050 −0.050 10, 10′ 0 6.558 7.799

Table 7: The coefficients dij and eij for i, j = 7, 7′, 9, 9′, 10, 10′ and j > i. †For Num 〈A9〉 XSM

has been set to zero and the corresponding coefficients are given in units of 10−9.

The SM predictions XSM and the coefficients ai, bi, ci and dij, eij are given in table 6 and

table 7, respectively. We assumed central values for all parameters.
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